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I NTRODUCTION

In this report aerosol characterization measurements are analyzed for predic-
tion of countermeasure aerosol effects on high-energy laser (HEL) beams.
Although the general principles are applicable for various beam parameters,
our calculations will be oriented toward those of a pulsed CO2 laser k1O.6pm
'wavelength) with a pulse length of about 3ps and a total beam energy of about
20U J. The focus of this effort will be the effhct due to evaporative clear-.
Ing. The basis for thermal blooming' (atmospheric lensing due to thermally
created density gradients in the beam), the other major nonlinear effect, will
be eý.tablished by describing heatiiSg of the ambient gases and particles.
Threshold calculations show that the 3ps pulse of these tests is short for
strong blooming effects.

There measurements were performed in conjunction with a test of an HEL having
the parameters described above. The beam traversed a trench approximately
100 m long. The trench was covered with polyethylene forming a relatively
closed environment in which the smoke wa- dispersed and then measured as a
function of settling time. Most bf the characterization was performed at the
midportions of the trench and assumed to approximate a spatial average since
the smoke mixing, diffusing, and settling times were lonq at 1 to 2 h.

14EASUREMENT SYSTEMS

Table 1 lists the iiistrumentation used for the characterization.

TABLE 1. WP CHARACTERIZATION INSTREINTATION

Measurement .Ss~tem Manufacturer

Extinction absorp- COz laser At,1ýispheric Sciences
tion, coefficients spectrophone Laboratory (ASL)
at 10.6um

Particle counting Active cavity, light Particle Measurement
and sizing scattering particle systems (Model

spectrometer, HeNe ASASP-X)

White light volume Nephelometer Meteorological
scattering coeff:,- Research Instruments
cients (Model 2050B)

Relative humidity and Cew-point hygrometer, Edgerton-Gerniehausen
partial pressure or thermometer and Gr;er (Model
water vapor 880)

IF. G. Gebhardt, 1976, "High power laser propagation,"' App Opt, 15(6):1479
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The following paragr3phs describe Instrumencs and discuss the need for each
type of information obtained.

Of the absorbing gaseous constituents at 10.6om, water vapor is expected to be
by far the strongest. The very high temperatures and dew points produced in
the trench by the greenhouse effects resulted in relatively high partial
pressures and thus high absorption coefficients. The Edgerton-Germehausen and
Grier (FG&G) condensation plate dew-point hygrometer was used to obtain the
water vapor partial pressures from which the water vapor absorption coeffi-
cients were computed. Relative humidity values obtained from the dew point
and temperature data were used to compute fractional water content of the very
hygroscopic smoke of burning phosphorus. This computation, in turn, was used
to determine the appropriate complex refractive index and other physical
properties of the smoke. Although site-peculiar gases are possible contribu-
tors, contributions to the net 10.61jm absorption coefficient due t3 other
ambient gases can be reasonably estimated.

The distribution of particles with respect to size is important since the
calculations of the nonlinear effects are 31so qenerally size dependent. The
instrument used (ASASP-X) had been subjected to laboratory tests, first with
particles of knowni sizes to determine accuracy in sizing and then with the
smoke of phosphorus to determine response to high densities. Calibrations
with respect to absolute density for each increment of particle radius are
difficult to perform with accuracy and have not been accomplished for this
instrument. As stated then, the form of the particle size di;tribution was
the object of this measurement. TFeiibsolute magnitude of the absorption was
obtained by using another technique--the spectrophone.

Before the measurements involving the spectrophone are discussed, an optical
nephelometer measurement of aggregate particle scattering from within a given
volume into a fixed solid angle will be introduced since it-A- M4,-Lh ^ b- -clA*pA
to the net absorption. The nephelometor averages over a volume as does the
spectrophone; but, like the particle measurement systems (PMS) instrument, it
measures scattering. The calibration and use of a meteorological research
instrument (MRI) type 2050B unit will be discussed later in this report.

The authors' application of spectrophones to atm.ospheric gases and particu-
lates is documented in the literature. 2  In a more recent publication, 3 the
authors discuss their spectrophone research on the smoke of white phosphorus
(WP). Spectrophone theory has been documented,• 5 and a variety of ASL

2C. W. Bruce and R. G. Pinnick, 1977, "In-situ measurements of aerosol
absorpti)n with a retonant CW laser spectrophone," Appl Opt, 16:1762

3C. W. Bruce and Y. P. Yee, 1980, "In-situ measurement of the ratio of aerosol
dbsorption to extinction coefficient," Appl Opt, 19:1893

4E. L. Kerr and J. G. Attwood, 1968, "The las i'lluminated absorptivity
spectrophone: A method for measurement of weak absorptivity in gases at laser
wavelengths," Appl Opt, 7:915

5L. B. Kreutzer, 1971, "Ultralow gas concentration infrared absorption
spectroscopy," Appl Phys, 42:2934
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applications is described in an ERADCOM report. 6  The particular system used
for these measurements was designed for field use and is tunable and
stabilized for several 1ONm laser lines. Figure 1 shows a schematic cross
section of this system, and figures 2 through 6 show on-site photographs of
the ins crament3tion. The instrumentaition was first mounted within the trench,
but for the later data, the instrumentation was located outside and adjacent
to the polyethylene cover, sampling within the trench through tubes.

MBREl( A&SORPTION

The ambient gas and particulate absorption coefficients were measured before
the tests. The particulate absorption was obtained !ndirectly by using parti-
cle counting results. Lorenz-Mie calculations were based on the-e data and
complex refractive indices for soil-based (clay) dust. Though not really
precise, this technique usually is accurate within a factor of three. The
ambient level of particulate absorption (coefficient) was found to be approxi-
mately 10" km 1 . The total (gaseous and particulate) absorption coefficient
as measured by the spectrophone was, as expected, much higher. Conditions
within the trench were relatively repeatable from day to day. Typical param-
eters for calculations and calrulated values are shown in table 2.

TABLE 2. CALCULATED RANGE OF GASEOUS ABSORPTION COEFFICIENTS,
a, IN TRENCH (PRE-9OWE TEST VALUES)

Dew-Poi nt Partial 'HO0 C02  Total

Date/ Temperature Pressure H20 2 @330 ppm (minus trace gases)

TI mr (OC) (torr) (km- 1 ) (km- 1 ) (kinf)

28-29 Jul
4-5 pm 80 26.2 0.66 0.08 0.74

30 Jul
5 pm 89.0 35.0 1.11 0.08 1.19

3 Aug
11 am 88.8 34.8 1.09 0.08 1.17

6y. P. Yee, C. W. Bruce, and R. J. Brewer, 1980, Gaseous/Particulate Absorp-

tion Studies at WSMR Using Laser Sourced Spectrophones, ASL-TR-0065, US Army
tnmospheric Sciences Laboratory, White Sands Missile Range, WM

9
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POWER SUPPLY, COOLANT

LASER, OPTICAL FEEDBACK AND LINE
STABILIZATION, BEAM CHOPPER.

S-- SPECTROPHONE MICROPHONE SUBCAVITY

AND ACOUSTIC DAMPER.
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POWER MEASUREMENT

Figure la. Major components of integrated field spectrophones.
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Figure lb. Spectrophone calibration and gas flow setup.
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Figure 2. Spectrophone and nephelometer (right) on tripod.
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Figure 3. Spectrophofle side of tripod mount.
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The partial water pressure was based on extrapolations from the data of Yin et
al," and the results were based on data of Shumate et al, 8 about 11 percent
lower for these partial pressu're-. O;ie tunnel section (within 4 m of the
measurements) was removed for the 28-29 August, 4 to 5 pw times. The section
cover was reinstalled before the aerosol tests, and the data here for 30 July
and 3 August are for completely covered trenches.

The measured gaseous absorption coefficient corresponding to the first examplk
(data of 28-29 July 1980) was 1.1 k&-1 . Probable error figures on this mea-
surement are not precise but are estimated to be 0.2, largely because of
temporal variations due to unknown source(s). Higher than predicted values of
the absorption coefficient frequently occur in ASL field measurements of
ambient absorption at lOum wavelengths.

Absorption due to trace constituents could elevate the value considerably. A
,-ough rule of thumb is that trace gas absorytion (within an absorption band
region) often reaches or exceeds 1 (ppm-km)- and, of course, 1 ppm is not a
high concentration.

During the measurement program, test project personnel frequently mentioned
the desire to obtain total absorption values lower than those measured or
predicted (minus trace gas contributions). Another reason for interest in t-e
ambient gaseous absorption is that the smoke aerosol level approached these
levels near the end of each test.

AEROSOL OHRLMTERIZATION FOR TESTS

Aerosol characterization for two test situations will be discussed. The dates
and approximate starting times are listed as the latter two examples in table
2 (information for 30 July 1980 and 3 August 1980). The most notable dif-
ference in the conduct of these two tests is the time of day. Aerosol char-
acteristics were similar, in tth,• mean.

The procedure was to ignite phosphorous smoke grenades in the trench at about
the one-quarter and three-quarter length positions. The smoke dispersed
roughly over a 2-h period during which aerosol measurements vere made. The
data and analyses will be presented as functions of the evolving aerosol
system and implications for nonlinear effects will be discussed.

Particle size distribution evolved generally as expected from prior laboratory
measurements on the same aerosol; that is, the mean densities decreased and
the peak moved to progressively smaller sizes. Figure 7 shows a composite
graph of the distribution pattern for the first test, These data represent
roughly 1-min averages (data were not always continuously available in
time). Circulation under the loosely fit trench cover (and pumping action by

7 p. K. L. Yin and R. K. Long, 1968, "Atmospheric absorption at the line center
of P(20) CO2 laser radiation," Appl Opt 7:1551

8M. S. Shumate et al, 1976, "Water vapor absorption of carbon dioxide laser
radiation," Appl Opt 15:2480

16
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fluctuations in air pressure on top of the plastic cover) was sufficient that
any type of settling calculations to determine decreasing densities would be
questionablc.

The differential absorption coefficients (absorption per micrometer particle
ridius) were calculated by using I.orenz-Mie theory with optical constants
appropriate to the composition of the smoke. To accomplish this calculation,
the relative humidity for the test was computed from the measurements of
figure 8. The relative humidity was used in turn to calculate the percent of
water for the hygroscopic smoke on the basis of measurements made in our
laboratory and also predicted ty the theory of Hanel and Bullrich. 9  The
relationship is plotted in figure 9. Finally, the complex indices were
obtained from i work by Querry and Tyler, 1 ° but heir data posed a problem;
two sets of complex indices were obtained from .,dis source (figure 10). We
have discussed the strange appearing results with the authors who maintain
that both sets are correct. We have simply used them (no measurements fell in
the disjointed data gap).

* Figure 11 represents a plot of the differential absorption based on the data
of figure 7. The absorption peak occurs at a radius of about 1.2um soon after
the smoke is dispersed and decreases relatively smoothly to about O.4•im in
roughly 2 h; in the same time the peak absorption level has dropped roughly
two orders of magnitude. At the midpoint in this 2-h evolution, 80 percent of
the absorption occurs within a radius span of approximately 0.30um.

The background particulate absorption is represented by the lowest curve
labeled 1641, that is, before the smoke was released. The contribution here
(at about 10-3kmm') is well below the ambient gaseous absorption.

The total absorption coefficient as calculated fronI. the particle size and
density information is plotted as a function of time in figure 12. For this
presentation, !-min averages obtained at approximately 10-min intervals are
connected by straight-line segments. These values are much lower than those
of the spectrophone measurements. The spectrophone yielded absorption and
extinction coefficient Deak values (in separate measurements) of about 200 and
220 km- 1 , while the parcicle counter result was about 10 kin'L This differ-
ence is believed to be due primarily to low counting efficiencies and sampling
errors ir. unknown proportions. As the purpose of sizing and counting for
these tests was to obtain measurements of the form of the size distribution as
a function of time rather than absolute values, this difference is not a prob-
lem. Prior calibration of the counter using monodisperse aerosols precludes
sizing as a prime source of error. Likewise, the optical constants and calcu-
lational scheme introduce uncertainties that are very small compared with the
difference.

9 G. Hanel and K. Bullrich, 1978, "Physico-chemical property models of

tropospheric aerosol particles," Beitrage Zur Physik der Atmosphare, 51:129

LOM. R. Querry and 1. L. Tyler, 1978, "Complex refractive indices in the

infrared for H PO 4 in water," J Opt Soc Am, 68:1404
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A comparison of figures 7 and 11 shows that the largest size particles are
most important in the calculation of the total absorption because of the rapid
increase with particle radius of the Lorenz-Mie efficiency factor for the
absorption cross section. Therefore, the apparent increase with time in the
densities of the relatively small particles (whose signals are probably masked
in the counter by those from the larger particles) is not of concern here. A
desigr,"d-in .,haracteri.;t;c of ýhe counter is also partly at fault 1,,i this
misrepresentation which causes a "tailing-off" effect in the signals repre-
senting progressively smiller sizes.

Calculations to fallow are based on the peak absorption values which aqree
well with the author's predictions based on the laboratory measurements of
reference 3 (within 15 percent).

The measurement of extinction coefficient derived from power loss in the
spectrophone is satisfactory dt high values iearly in the test) but is not
useful below 10 km-I duje to the question of power meter drift. Figure 13
: nows the extinction coefficient for the test of figure 12. The slope of the
decreasing extinction coefficient with time, however, agrees well with that
found by using the PMS particle counter data. An electronic problem, presumed
to be overheating of system electronics prevents complete comparison of spec-
trophone absorption data for this test.

Time variations culled from the extinction, the density distribution, and the
absorption measurements at the location of the apparatus were greater than a
factor of five for integration times less than 3 s and about a factor 2 to 3
"for integration times of 10 s. However, a spatial density average over as
much as 10 percent or greater volume of the trench probably varies less than
20 percent.

The temperature time series for the second test is given by figure 14.

Temperatures in the trench were somewhat lower than the temperatures in the

first test even though the second tests were during midday (the 30 July test
was later in the afternoon). Particle size distributions and their evolution
in time were similar in form thouoh the corrosive action of the smoke caused a
reduction in particle counter laser power for this test. The spectrophone
measured peak absorption and extinction values were virtually the same at
200 km-'. Absorption coefficient as a function of time for this test is shown
in figure 15. For a resolution time of about 2 s, the magnitude fluctuates by
more than an order of magnitude (figure 16). The same data, when averaged
over about a minute for each of the sampling periods, yield a much more steady
decrease. This decrease has nearly the same mean slope as that calculated
from the particle counter data though the magnitudes are very different.

In contrast to the spectrophone, the nephelometer measurement yields primarily
particle scatterinq information (molecular scattering is generally much
lower). Due to their high sensitivity, data were obtained only at the very
end of these tests--when the ends of the trench were opened near test comple-
tion. The nephelometer output (scattering c, 'fficient at visible wavelengths)

22
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was related 4n a laboratory calibration to extinction and absorption coeffi-
cients at a wavelength of l0.6im (figure 17). Since there was no evidence of
nonlinearity, a single constant serves to relate the volume scattering coeffi-

cient to extinction, that is, I ckm-l J and another to relate the scat-
SSc. Coef.J

EO 1 km-I Ifr h mkeo p

tering coefficient to absorption .96 x S. k for the smoke of WP.
L0 Sc. Coef.].

Figure 18 shows how the particulate concentration can fall at the center
position when the wind is allowed to flush the trench. A nephelometer near

: the target end of the trench (about 6 m from the end), though, recorded that
the fluctuating smoke attenuation decreased in that region rapidly to below
2 km"1 at about 1218, while near the center, the absorption coefficient level
was still near 10 km- 1 . For about 1 min t4uring which laser pulse 7718 was
fired through the trench (1214 to 121), this nephelometer measured
a = 1.51 ± 0.06 km-1 .

The smoke of WP is hygroscopic, quickly drawing water from the vapor state.H The reduction of the r-lative humidity resulting from the introduction of the
smoke into the tunnel was calculated on the basis of prior laboratory measure-
ments, that is, a smoke production efficiency 7actor of kE 0.35 m2 /gm and a
fractional growth in particle radius of r/ro : 1.21 for an initial relative
humidity of 35 percent. 9  By using the initial value of absorption to calcu-
late the mass density of the smoke (pm = 0.16 gm/m 3) and assuming a dew-point
temperature of 84°F to obtain the initial partial pressure of water (29.8
tort), a partial pressure change of less than 0.1 torr was obtained. This
change is negligible for effects of interest here.

EFFECT OF EVAPORATIVE CLEARING ON HIGH POWER BEARS

The tendency to punch-through the absorbing countermeasure aerosol WP is of
prime interest here, and parameters from the two similar tests will be used as
a basis. The thermodynamic and optical bases for the calculations will be
applied by using laser beam parameters relevant to a system whose beam param-
eters are to be described (US Army Missile Command [MICOM] S3 system).

9G. Hanel and k. Bullrich, 1978, "Physico-chemical property models of
tropospheric aerosol particles," Beitrage Zur Physik der Atmosphare, 51:129
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Figure 17. Settling chamber measurements: nephelometer output

relationship with extinction/absorption coefficients.
Absorption coefficient = 0.96 x extinction coefficient.
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Figure 18. Absorption coefficient at the end of the second test,
first by the center spectrophone and then by the center
"" ephel ometer.

26



The thermodynamical calculations for the clearing effect begin with the dic-
tionary of terms listed in table 3. Glickleril and Sutton12 used elaborate
(but still inexact) integral solutions to describe clearing by fog.

TABLE 3. DEFINITION OF SYIBOLS FOR EVAPORATIVE CLEARIKG

Q - heat (joules)

R - radius of particle (micrometers, centimeters)

RB - radius of beam (centimeters)

r - variable representing radius

P - instantaneous power (watts)

E - beam energy (joule's)

Pm - bulk density of particulate material (grams/cubic centimeters)

c - specific heat of particulate material (joules/grams degrees
Kelvin)

H - latent heat of vaporization (joules/grams)

Q- Q - Lorenz-Mie efficiency factors for absorption and
extinction

T - mean temperature of particle (degrees Kelvin)

t - time (seconds)

Note that Pm, c, TBoil, H, and the complex refractive indice. leading to

and QC are functions of the relative humidity. The values are listed in

appendix A.

11S. L. Glicker, 1971, "Propagation of a 1O.6pm laser through a cloud includ-
ing droplet vaporization," Appl Opt, 10:544
1 2G. W. Sutton, 1978, "Fog hole horing with pulsed high energy lasers: At,

exact solution including scattering and absorption," Appl Opt, 17:3424
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CALCULATIONS, PART I: EVAPOPATION OF SINGLE PARTICLES

Particles are first heated to boiling T, assuming spatially uniform heating of
the particle, and then energy is added to evaporate them.

To reach boiling temperature, the rate of heating,

R Q '3R [ P beam power density'

R 2

then is integrated, Q Q Pdt, and equated with the energy

required to boil the particle.

Q = I om rAT

ti

Now f Pdt is just the energy, E, which has passed the plane of the
0

particle considered (to time t'). Solving for this energy, one obtains

Rn Rm B2C
EB 4nC) mpB AT,

To add the heat of vaporization,

EL 411) Pm RpRB2ELHV (T- Q •

a
The suT of these two processes represents the total beam energy which has.
passed the plane of a particle of radius Rp at the timne of eviporation, that
is, p

"Ecum(R) = EB(RpJ + ELHV(Rp)

An examination of the S3 laser pulse intensity profiles led to the suggestion
that the pulse be modeled as triangular in time.* Samples pulse shapes are
shown in appendiA B. Figure 19 shows sample real and approximate pulse forms.

*Bill Jones, MICOM, privite communication
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Figure 19. Sample real and approximate pulse forms.

Sample (ard typical) parameters are

E(total) = joules

"tpulse = 3.2os

Smax = 125 mW|ma

The objective here is to determine the time to evaporate particles and then to
calculate the energy remaining for each power lobe of the far field pattern.

to

Ecum f Pdt

0

Then u3ing d linear form

to

E cum = f (mt + Pmax )'t

0

m Pmmax= • (t•2,+ mat where m -- -

tpulse

29
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Solving this for t, the cumulative pulse time,

(2 cum.(t s
=tpulse tpul 7 m pulse

Here it is assumed that the particle is vaporized dnd vaporous at time V.
The first simplifying assumption is justified since clearing is effective when
particle diameters are reduced in boiling by considerably less than on order
of magnitude (see figure 11). The second assumption follows from kinetic
calculations showing that dispersal velocities are sufficient to form an
effective vapor state within Fn interval very short compared with the pulse
duration.

Figure 20 shows the problem schematically.

-ENERGY REMAINING
TO PUNCH-THRU

(OUR INTEREST HERE)
P

TIME TO REACH ADDING LHV
ROILING TEMP.

Figure 20. Expenditure of energy.

Now the energy (or power) density distribution in the beam must be determined.

The job is simplified since the laser outpul. is a line-square, that is, two
pairs of parallel slits in orthogonal direccions (figure 21). A sample burn
pattern (quite overburned) is shown in appeidix C.

Figure 21. Near, near field pattern.
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i The power densities in the near, near field are therefore those of orthogonal
pairs of finite slits and, in the far field, are the combfned diffraction
patterns of these slits. Actual burn patterns (sample in appendix D) look
quite like the sketch of figure 22.

C)C

(There will be some energy
in each quadrant, but the
amount will be relatively
small compared with the
identified energy "lobes.")

Figure 22. Far field pattern.

The approach is to estimate the distribution of energy in this pattern or that
* in the area under the twin slit intensity profile.

I _(sin2o) X (cos2 )

that is, the single slit pattern (first term) modulated by that of the twin
slits. Beta and alpha contain the viewing angle and dimensional parameters of
the calculation.

Figure 23 shows a perspective sketch of the far field~ beam profile.

EFFECTIVE AREA "~A"

Figure 23. Sketch if the double, double slit pattern
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I ~where 1,~ are the relative intensities and the K is found fromi the total energy
and the pulse shape.

Appendix E contains the details of the calculation of the distribution of
C energy in the laser beam to which this formula is applied.

if The distribution of energy in the lobes as calculated in appendix E is given
in table 4.

n TABLE 4. DISTRIBUTION OF ENERGY IN FAR FIELD BEAM LOBES FOR S3 LASER

Lob* Prcet E Percent ELper Lobe Energy Density per Lobe
LLobe Percnta for Et I = 200 J

Number per Lobe (CM-2) (JA.Mi2)

0 18.7 7.19 14.4

1 8.5 4.47 8.94
Viw2 6.3 3.32 6.64

3 3.7 1.95 3.90
4 1.5 0.79 1.58L'5 0.3 0.16 0.32

*Increasing away from center

The total area involved at the target distance is approximately 40.6 cm2.

The clearing time and then the fractional energy remaining to be transmitted
after clearing will be calculated. The clearing time and fractional energy
will then be obtained for the entire beam.

The cle~aring process effectively reduced the absorption to gaseous levels
which are much lower, that is, to near normal atmospheric levels. The scat-
tering is, of course, also greatly reduced; however, for the smoke of WP, the
fraction Of CO2 laser beam energy scattered to that absorbed is less than 10
percent. The atmospheric propagation is therefore relate'd to the punch-
through effect in a form' illustrated in figure 24.

Akk 
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Figure 24. Illustration of relationship between laser
pulse and propagation parameters.

Tables 5 and 6 show rapid and effective clearing as a function of smoke parti-
cle size for a relative humidity of 35 percent. Earlier data show that
few particles are larger than Rp Z 4um and that the clearing efficiency -

almost independent of size to that point because of the increase in Lorenz-Mie

efficiency with radius (up to Rp= 4=m) in spite of the growing mass to be

evaporated. Coincidentally, this convenient independence disappears for the
larger particles. The last column represents the efficiency of punch-through
or, in other words the percentage of energy in the cleared field. The trans-
mission is not unity at that point (as was mentioned) but reverts nearly to
the pretest levels.

3
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TABLE 5. PARAMETERS OF SINGLE PARTICLE CLEARING AS FUNCTIONS OF PARTICLE
SIZE AND BEAR LORE NMJBER FOR ETOTL = 200 J A TD = 3.2ps.

Center Lobe (0)
Energy = 40.0 J

Time to Fraction of Enerqy
R Evaporate in Remaining
(09) (ps) Portion of Pulse

0.01 0.00202 1.68 x 10-1 0.90

0.05 0.0101 1.68 x 10-1 0.90

0.10 0.0203 1.67 x 10-1 0.90

0.15 0.0305 1.67 x 10-1 0.90

0.20 0.0511 1.32 x 10-1 0.92

0.40 0.0828 1.64 x i0-1 0.90

0.60 0.127 1.60 x 10- 0.90

1.0 0.222 1.52 x 10-1 0.91

2.0 0.490 1.38 x 10-1 0.92

4.0 0.904 1.50 x 10-1 0.91

8.0 1.217 2.25 x 10-1 0.87

10.0 1.265 2.72 x 10-1 0.84

1;.0 1.2600 4.20 x 10-1 0.76

20.0 1.2123 6.00 x 10-1 0.66

25.0 1.1663 8,09 x 10-1 0.56

30 0 1.1663 1.01 0.47

40.0 1.1663 1.47 0.29

50.0 1.1663 2.11 0.12

60.0 1.1663 >3.2 0.00
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TABLE S. (Cont)

First Side Lobe (1)
Energy % 18.1 J

Time to Fraction of Energy
R Evaporate in Remaining

(u~)(NO Portion of Pulse

0.01 2.76 x 10-1 0.83

0.05 2.76 x 10-1 0.83

0.10 2.75 x 10-1 0.84

0.15 2.74 x 10-1 0.84

0.20 2.16 x 10-1 0.87

0.40 2.69 x 10-1 0.84

0.60 2.63 x 10-1 0.84

1.00 2.50 x 10-1 0.0

2.00 2.26 x 10-1 0.0

4.00 2.46 x 10-1 0.0

Second Side Lobe (2)

Energy = 13.5 1

0.01 3.77 v10-1 0.78

0.05 3.77 x 10-1 0.78

0.10 3.77 x 10-1 0.78

0.15 3.77 x 10-' 0.78

0.20 2.94 x 10-1 0.82

0.40 3.67 x 10-1 0.0

0.60 3.58 x 10-1 0.0

1.00 3.41 x 10-1 0.0

2.00 3.07 x 10-1 0.0

4.00 3.34 x 10-1 0.0

L3



TABLE 5. (Cont)

Third Side Lobe (1)
Energy = 7.88 J

Time to Fraction of Enerqy
R Evaporate in Remaining

(j•s) Portion of Pulse

0.01 6.75 x 10-1 0.62

0.05 6.75 x I0-1 0.62

0.10 6.75 x 10-1 0.62

0.15 6.75 x 10-1 0.62

1 0,20 5.20 x 10-1 0.704

I 0.40 6.57 x 10-1 0.0

0.60 6.41 x 10" 0.0

1.00 6.07 x 10-1 0.0

2.00 5.44 x 10-1 0.0

4.00 5.95 x 10-1 0.0

Fourth Side Lobe
Energy = 3.20 J

0.01 2.37 0.69 x 10-1

0.05 2.37 0.69 x 10-1

0.10 2.37 0.69 x 10-1

0.15 2.37 0.69 x 10-1

0.20 1.56 0.26

0.40 2.04 0.91 x 10"1

0.60 2.14 0.0

1.00 1.95 0.0

2.00 1.66 0.0

4.00 1.89 0.0

(Particles in the fIfth side lobe require > 3.2ps)
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TABLE 6. PARAIETERS OF CLEARING FOR SPECIFIC CONDITIONS (SECOND TEST)
AND USING PARTICLE RADII OF PEAK ABSORPTION

Time: 1159

Run Number 7716

tmax ' 3.0is

Etotal = 144.9 J

Rp = 1.Opm

Qa = 0.2217

Beam Lobe Time to Boil Fraction of Energy

Number Pmax and Evaporate in Remaining

(from center) W (Ps) Portion of Pulse

0 1.81 x 107 2.12 x 10-1 0.86

1 8.21 x job 3.50 x 10-1 0.7R

2 6.09 x 106 4.83 x 10-1 0.70

3 3.57 x 10' 8.90 x 10-1 0.49

4 1.45 x 106 >3.0 0.0

5 2.90 x 10"• ,3.0 0.0

Time: 1203

Run Number 7717

tmax ` 4.1us

EtotaI = 212.5 J

Rp = 1. O1m

Qa = 0.2217

0 1.94 x 107  1.95 x 10-' 0.91

1 8.81 x 106 3.20 x 10-1 0.85

2 6.53 x 10b 4.38 x 10-1 0.80

3 3.84 x 106 6.69 x 10-1 0.65

4 1.55 x 10j 2.52 x 10-1 0.16

5 3.11 x 10i >4.1 0.0
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TABLE 6. (Cont)

Time: 1214

Run Number 7718

tmax : 3.3ps

EtotaI = 204.5 J

Rp = 0.7pm

Qa = 0.1469

Beam Lobe Time to Boil Fraction of Energy
i Number Pmax and Evaporate in Remaining

(from center) (Ps) Portion of Pulse

0 2.32 x 10' 1.73 x 10-1 0.90

1 1.05 x 107 2.85 x 10-1 0.84

2 7.81 x 106 3.89 x 10-1 0.78

3 4.59 x 106 6.96 x 10-1 0.62

4 1.86 x 106 2.44 0.65 x 10-1

5 3.72 x 105 >3.3 0.0

Time: 1221

Run Number 7719

tmax = 3.0ps

Etotal = 200 J

Rp = 0.6wm

Q = 0.1274

0 2.49 x 107 1.59 x 10-1 0.90
1 1.13 x 107 2.61 x 10-1 0.83

2 8.40 x 106 3.58 x 10-1 0.78

3 4.93 x 106 6.42 x 10-1 0.62

4 2.00 x 106 2.28 0.66 x 10-1

5 4.00 x I05 >3.0 0.0
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TABLE 6. (Cont) I
Time: 1227

Run Number 7720

tmax = 3.3ps

Etotal = 198 J

Rp = 0.451jm

Qa = 0.0937

Beam Lobe Time to Boil Fraction of Energy
Number Pmx and Evaporate in Remaining

(from center) (W (vs) Portion of Pulse

0 2.24 x 107 1'.81 x t0-' 0.89

1 1.02 x 107  2.96 x 10-1 0.83

2 7.56 x 106 4.06 x 10-1 0.77

3 4.44 x 10G 7.30 x 10- 0.60

4 1.80 x 106 2.73 0.34 x 10-i

5 3.60 X 105 >3.3 0.0

Time: 1232

Run Number 7721

tmax = 3.7is

EtotaI = 193.2 J

Rp= 0.40jm
Q= 0.0828

0 1.95 x 107 2.09 x 10-1 0.89

1 8.88 x 106 3.42 x 10- 0.82

2 6.58 x 106 4.70 x 10-1 0.76

3 3.86 x 106 8.48 x 10-1 0.59

4 1.37 x 101 3.53 0.34 x 10-2

5 3.13 x 105 >4.0 0.0
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CALCULATIONS, PART II: COLLECTIVE EFFECT

From these results one can calculate the net clearing effect on the beam.
This punch-through phenomenon will be Illustrated in the following calcula-
tions. For this purpose the particle size corresponding to the peak absorp-
tion for selected settling times will be used.

The expenditure of energy as a function of aerosol loading can be calculated
from

E(L) - E(t = 0 to t')e-ax + E(t = to t pulse)

.1:L tpulse

= e"L P(t)dt + P(t)dt
U t'

where t' is the time to evaporate and tnulse is the total pulse duration.
Here t' will have been increased over thaT of the single particle function as
a result of the mass loading. For particles of given size and composition, t'
is an inverse function of Pmax* (L) represents the path length within the
aerosol medium. The time to evaporate at a given position in the measurement
is now dependent on that position although the above equation is written as
though it depends only on the end poit. This simplificatioo does not signif-
icantly alter the results here. The smoke of phosphorus clears significantly
for a fairly broad range of aerosol absorption coefficients (or alternatively
a range of aerosol mass loading values). For relatively low absorption coef-
ficients, clearing can do little to enhance the total energy transmitted. The
enhancement due to clearing will be determined by the above presentation and,
using this technique, can be extended to absorption coefficients of several
tens per kilometer (typical field values) for even the relatively low energy
system of these tests. Clearing continues to be significant for this (and
other volatile) aerosols to, roughly, the loading at which beam energy is
consumed in the evaporation process. Screening of available energy f~r parti-
cles farther from the source causes an increase in t' at about 25 km- (effec-
tively) though the increase iepends somewhat on factors such as particle size
and relative humidity. For t0e calculations to follow, open air dispersal of
WP was assumed; therefore, the peak absorption is for particles of 1I n to
1.2um radiu.s (see early-time data of figure 11). For all Lests in the trench,
particle radii became progressively smaller at similar rates; and the attenua-
tion also decreased (on the average) throughout the test. The Incorporatin of
the bulk attenuation into the calculation of t' yields the results of figure
25. Table 5 shows that particle size and Lorenz-Mie efficiencies vary such as
to hold tV, the time to evaporate the particles, nearly constant (independent
of particle size). Of course, particles with large radii require more energy
to evaporate. The form of the curve, that is, curving over quickly at the top
(on a semilog plot) augurs for the efficiency of the punch-through effect
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Figure 25. Time to evaporate center lobe in loaded aerosol medium.
Loading given by absorption coefficient. Etotal = 40.0 J
(in lobe), Rp = lum, tnulse = 3.2.as.

since it conveys that the time to evaporate increases rapidly with the absorp-
tion coefficient only for relatively high values of the coefficient. The
remaining step is to show the r'elative improvement in the energy transmitted
when punch-through occurs (table 7 and figure 26). The improvement in enerqy
transmitted is truly significant--even though the pulsed laser on which the
calculated parameters were based on a relatively small one.

Generally, thermal blooming and evaporative clearing effects are interactive;
that is, the power density is affected by the thermal blooming which in turn
affects the evaporative c6earing. Thermal blooming depends on beam parameters
(power density, pulse length, and pulse shape) and atmospheric parameters
(gaseous and particulate absorption, crosswinds, and turbulence). Appendix F
shows that blooming effects on the test beam are not expected to be strong;
therefore, for this analysis, these effects have been ignored.
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Figure 26. Total energy transmitted in center- spot as a function of
absorption coefficient for the WP-smoke aerosol. No
gaseous absorption effects included.
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CONCLUSIONS

Aerosol characterization performed on the smoke of WP was used to calculate
punch-through or evaporative clearing on a puised C02 laser beam. This effect
can be significant for HEL use. High energy pulsed CO2 laser beams can effec-
tively penetrate red phosphorus (RP), WP countermeasure smoke, though the
degree of efficiency depends on beam and aerosol parameters. This effective-
ness is related to the volatility and absorbing qualities of the smoke parti-
cles. Repetitive and/or long pulses can encounter strong thermal blooming due
to the high level of aerosol absorption which counteracts the clearing
effect. This report discusses the development of an analytical model and its
application to aerosol parameters that derive from measurements in an extended
enclosure at the MICOM in Huntsville, AL, and then to aerosol p~arameters that
are more typical of atmospheric dispersion of the smoke (represented primarily
by relatively large diameter particles). The laser beam parameters in both
cases are relevant to a high energy research laser owned by MICOM and used for
propagation studies in the above-mentioned enclosure during the in situ aero-
sol measurments presented in this report. Aerosol absorption measurements
used in situ aerosol spectro~hones developed at ASL. Thermal blooming (the
stated original objective of the MICOM exploratory measurements program) is
calculated in this report to be minimal for the beam parameters of the MICOM
(S 3 ) laser as used in these tests and therefore is not expecttd to signifi-
cantly affect the calculations of the clearing phenomenon.
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TABLE 7. PARAM4ETERS SHOWING EFFICIENCY OF PUNCH-THROUGH FOR ETOTAL =40 J FOR CENTER LOBE.

( )(2) (3) (4) (5) (6) (7) (8)

0n-Target
Q. Energy -to On-Target

Aeroso' t' Without tpulse t x 40 Energy
Absorption Time to Clearing, uleWith
Coefficient x L Evaporate E/40 tpulse (5) x 40 Clearing

(km-1) (L -- 10-1'Km) Aerosol for a x L (J) (J) (6) + (7)/40

0.O 0.0 1.52 x 10-7 1.00 0.953 1.9 38.1 1.00

0.1 0.001 1.54 x 10-7 0.99 0.952 1.91 38.08 1.00

. 0.05 1.60 x 10-7 0.95 0.950 1.9 38.00 1.00

1.0 0.10 1.68 x 10-7 0.90 0.948 1.89 37.90 0.99

rjj1.5 0.15 1.78 x 10-7 '0.86 0.944 1.9i 37.80 0.99

2.0 0.20 1.87 X 10-7 0.82 0.942 1.92 37.70 0.99

2.5 0.25 1.97 X 10"7 0.78 0.938 1.92 37.50 0.98

3.0 0.30 2.08 x 10-7 0.74 0.933 1.92 37.40 0.98

4.0 0.40 2.30 x 10-7 0.6/ 0.930 1.93 37.20 0.98

5.0 0.50 2.56 x 107 0.61 0.920 1.95 36.80 0.97

10.0 1.00 4.34 x 10-7 0.37 0.864 2.01 34.60 0.92

15.0 1.50 7.56 X 10-7 0.22 0.764 2,08 30.60 0.82

20.0 2.00 1.41 x 10-6 0,14 0.559 2ý47 22.40 0.62

121.0 2.10 1.63 x 10"b 0,12 O.491 2.45 19.60 0.55

22.0 2.20 1,92 x 10-6 0,11 0.400 2.64 16.00 0.47

23.0 2.30 2,34 x 10-6 0,10 0.269 2.93 10.80 0.34

23.5 2.35 2.70 x 10-6 0,095 0.156 3.21 6.24 0.24

23.7 2.37 2,97 x 10-6 0.093 0.072 2.45 2.88 0,16

i23.8 2.38 >3.2 X 10-6 0.093 ....
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APPENDIX A

CONSTANTS USED IN THE CALCULATIONS OF NONLINEAR EFFECTS

= 1.75 g/cc (bulk density)

c = 0.475 (cal/gm)/ C (specific heat capacity)

H = 266 cal/gm (latent heat of vaporization)

T = 323 K (ambient temperature)

T Bp= 443.7 K (boiling point temperature)

SRB =0.91 cm center spot (beam radius)
0.778 cm side lobes
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APPENDIX B

SAMPLE PULSE SHAPES

CO2 Laser Pulse Width

0. 51 s/div

0.1 V/div
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APPENDX C

NEAR, NEAR FIELD BURN PATTERN

- I -. -.

. * c*,I .I|9.. .

"" 
-t

94

Run Number Joules Discharge Voltage

7715 0.825 39.5 kV

/716 0.900 36.0 kV

7717 1.500 35.9

7718 1. 560• 35.3

7719 1.512 35.9

7720 1.220 35.4
7721 1.320 35.4

7722 1.300 29.9 (prefire)
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APPENDIX D

FAR FIELD PATTERN AT TARGET SITE FOR LASER CORRESPONDING
TO NEAR FIELD BURN PATTERN OF APPENDIX C

4'-4L

I i43



APPENDIX E

METHOi) OF ESTIM4ATING ENERGY DISTRIBUTION IN
THE BEAN FOR S3 LASER BEAN

Data on hand consist of:

1. Burn pattern reproductions in actual size for field;

2. Near field burn pattern (not useful);

3. Some dimensions on laser,

that is, a. Unstable resonator central reflector 7.57 cm "square";

b. no outside limit (beam overfills square so beam energy
cuts off at about 10 cm. This is not adequate. This
outside limit must be calculated);

c. beam take off and reflector supports are 0.3
inches wide;

d. distance from laser to target is 136 m.

Thus, the output aperture geometry is as shown in figure E-1.

1/ reflector supports
Output beam
(intentional
overfill)

45 angle heam takeoff bar for photon

M-171drag detector 
and sampling calorimieter

Figure E-1. S3 laser outpiut geometry.
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Approximation: Use central arrays of orthogonal twin slit patterns, that is,

* -sin 2S (os2

b sin 0

TI
a = d sine,

L, where b is the effective slit width at the output of the unstable resonator
and d is the center-to-center distance of the output beam between the parallel
sides.

First we calculate the viewing angle, 0, in terms of the displacement from the
H center of the arrays,

Ssin x(cm)
1.36 x 104

We use the far field burn pattern and the double-slit part of the calculation
to find the critical dimension, b.

TI

=-d sine,

where d 7.56 cm + 1.0 x (gap width in centimeters).

The coS 2  d factor gives the fine grain pattern under the
1.36 x 104

single aperture intensity envelope. Maxima in the pattern are determined by

d[cos(c'dx)] cI sin cdx =0

Appendix D
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where

c =- 1 0.2179 cm
1.36 x10

This condition is met when

c'dx 0= , 1H, 21H . . . .

First, when x = 0

second, when x .
c'd

Then from the photo of the burn pattern (displacements, x, to five intensity

lobes),

d = <9.09 cm> ± 0.07 cm (or t8 percent)

Calculating the quite critical parameter b for the diffraction envelope

sin
2 a

that is, 9.09 cm (twin slit center-to-center separation)

7.56 cm (twin slit inside dimension)

b =1.53 cm (2 x (112) x slit width).

Therefore,

b = 4.535 x 103

11
d = 2.694 x 104

The calculations also need to be done for the maxima of the lobes. The
average separation from the determination of d could be used,

x 0, 1.6, 3.13, 4.77, 6.37 cm

1.6 1.53 1.64 1.6
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that is,

x <1.593> ± 0.040 (or ±2.5 percent)

From this,

-4
sin e = 1.171 x 10

Now the relative intensities in the lobes of the far field pattern can be
calculated (table E-1).

TABLE E-1. CALCULATION OF RELATIVE INTENSITIES FOR S3 LASER BEAM LOBES

Can See? Spot No. Sin a Single Slit Double Slit Irelative

X 0(ctr) 0 2.00 1.00 2.0

X 1 1.171 x 10-4 0.909 0.999 9.09 x 10-1

X 2 2.342 x 10-4 0.676 0-999 6.76 x 10-1

X 3 3.513 X 10-4 0.394 0.998 3.93 x 10-1

X 4 4.684 x 10-4 0.1604 0.997 1.60 x 10-1

No 5 5.855 x 10-4 0.0309 0.995 3.08 x 10-2

No 6 7.026 x 10-4 1.95 x 10-4 0.994 1.95 x 10-4

It will be assumed that all the energy is in the center and five wing spots in
each direction (21 spots).
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The intensity is then scaled for fraction of total power (10.675 norm).

IF I% t

O(ctr) 1.87 x 10 18.7

1 8.52 x 10-2 8.5

2 6.33 x 10-2 6.3

3 3.68 x 10-2 3.7

4 1.50 x 10-2 1.5

5 2.89 x 10- 0.3

The fInal step here is to obtain the lobe associated numbers giving the
fractional power densities. To obtain these numbers divide the above value.
by 1.90 for all but the center lobe. For that lobe, divide by 2.60 cm2 . The
result is in the text.
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APPENDIX F

HIGH-ENERGY SINGLE-PULSE PROPAGATION ESTIMATES

- High-energy laser (HEL) propagation is dependent upon a variety of atmospheric
conditions and beam parameters. Some of the more important atmospheric
factors involved are absorption, turbulence, and crosswinds. Thermal blooming
and gas breakdown thresholds may be calculated from these factors. 1  In this
appendix the occurrence of these two effects on a CO HEL beam is formulated
in terms of limitations on pulse length. 2  Assuming a fixed total pulse
energy, if the actual pulse length of the laser beam is too short, then the
problem of gas breakdown becomes important and is the dominant mechanism that
restricts the energy fluence. On the other hand, if the pulse length is too
long, the energy fluence on target drops significantly as a result of
transient thermal blooming. These two effects deleterious to HEL propagation
are thus minimal for a range of pulse lengths, tp, between some minimum pulse

length, tmi, due to gas breakdown and less than some "saturated" pulse length,

ts, due to transient thermal blooming effects; that is, tm ( tp ts.

The saturation time, defined as the time at which the instantaneous peak
irradiance at the target has dropped to about 10 percent of its initial
value, 3 may be written as follows:

nop0c p 1/2

t 0.08 )22 2Z!! t~s = 2a0 -ns2 sfqP DE-1/2'

( t s:a~bsfqp p
where

no = refractive index

PO = density

Cp = specific heat at constant pressure

nt = coefficient of index change with respect to temperature

cs = acoustic wave velocity

1 F. G. Gebhardt, 1976, "High power laser propagation," Appl Opt, 15:1479

2S. L. Glicker, 1971, "Propagation of a 10.6um laser through a cloud including
droplet vaporization," Appl Opt, 10:644

3 p. B. Ulrich, 1973, "Requirements for experimental verification of thermal-
blooming computer results," J Opt Soc Am, 63:897

54



aabs = absorption coefficient

f = correction factor that accounts for finite attenuation and
is a function of atZ, the optical depth;

that is,

* f Z -1 + eCtz
(otZ)t

at = total extinction coefficient

qp = correction factor that accounts for varying
degrees of focusing;

that is,

f X 1 - 4 lnX where X = 0

8X2 (X -1)2 d

AC = 1/e beam radius

A = vacuum l/e beam radius at the range Z for an infinite
Gaussian source including diffraction effects and poor

beam quality,

that is

Z)2,
A2  + A • 1
I k2A2-

0



where the a parameter ctiaracterizes the beam quality of the source in terms of
its far-field or focused beam radius.

2n1

X = wavelength of the source

Z = range

R = focal range of the beam

D = 2 vT-Ao = aperture diameter

pE = total pulse energy

The minimum pulse length limit, tm, on the maximum peak target irradiance as

imposed by the gas breakdown threshold is simplified as follows:

D2 E
tm = 1.6- e2- tZ ,

X Z21BD

where IBD is the gas breakdown threshold for the atmosphere depending upon

many factors such as dust aerosol density, laser wavelength, pulse length, and

focal snot size as discussed by Morgan. 4  For our calculations we assumed

typical values for the atmosphere of no = 1, Po = 1 kg/m 3 , Cp = 101 J/kg -K,

-nt = 10"6 K-1 , cs = 340 m/s, and IBD = 107 W/cm2 , which is appropriate for X =

10.6 jm.

The following table is a compilation of ts values for various absorption

coefficients as the density of the WP cloud decreases with time after initial
dispersion.

4 C. G. Morgan, 1975, "Laser-induced breakdown of gases," Rep Prog Phys, 38:621
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Ce.nter lobe (0)
Energy = 40.0 J
Effective beam diameter aperture = ?.57 cm

Cabs(km-1) f q ts(S)

50 0.321 3.81 3.33 x 10-6

25 0.506 3.81 3.75 x 10-6

10 0.736 3.81 4.92 x 10-6

5 0.852 3.81 6.46 x 10-6

2.5 6.922 3.81 G.79 x 10-6

1 1.0 0.967 3.81 13.6 x 10-6

I

First side lobe (1)
Energy = 18.1 J
Effective beam diameter aperture = 2.20 cm

aabs(km-1) f q ts(s)

50 0.321 7.36 4.16 x 10-6

25 0.506 7.36 4.69 x 10'6

10 0.736 7.36 6.14 x 10-6

5 0.852 7.36 8.08 x 10-

2.5 0.922 7.36 10.9 x 10-6

1.0 0.967 7.36 16.9 x 10-6
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Second side lobe (2)
Energy = 13.5 J
Effective beam diameter aperture = 2.20 cm

labs(km- 1) f q ts(s)

50 0.321 7.36 4.82 x 10-6

25 0.506 7.36 5.43 x 10-6

10 0.736 7.36 7.11 x 10-6

5 0.852 7.36 9.35 x 10-6

2.5 0.922 7.36 12.7 x 10-6

F4 1.0 0.967 7.36 19.6 x 10-6

I+
"Third side lobe (3)
Energy = 7.88 J
Effective beam diameter aperture 2.20 cm

C abs(km-1) f q ts(s)

50 0.321 7.36 6.31 x 10-6

25 0.506 7.36 7.10 x 10-6

10 0.736 7.36 9.31 x 10"6

5 0.852 7.36 12.2 x 10-6

2.5 0.922 7.36 16.6 x 10-6

1.0 0.967 7.36 25.7 x 10-6
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Fourth side lobe (4)
Energy = 3.2 J
Effective beam diameter aperture = 2.20 cm

aabs(km- 1 ) f q ts(S)

50 0.321 7.36 9.89 x 10-6

25 0.506 7.36 11.1 x 10-6

10 0.736 7.36 14.6 x 10-6

5 0.852 7.36 19.2 x 10-6

2.5 0.922 7.36 26.1 x 10-6

1.0 0.967 7.36 40.3 x 10-6

The following table is a compilation of typical tm values for various

absorption coefficients as the density of the WP smoke cloud decreases with
time after initial dispersion

IBD t

D (m) E (J) (W/cm2 ) (km"1 ) tm(s)

2.57 x 10-7 80 107 50 5.07 x 10-9

2.56 x 10- 7  80 107  25 6.17 x 10-8

2.57 x 10-7 80 107 10 2.77 x 10-7

2.57 x 10- 7  80 107 5 4.56 x 10-7

2.57 x 10-7 80 107 2.5 5.85 x 10-7

2.57 x 10-7 80 107 1.0 6.81 x 10-7
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Matching the average pulse length tp of the S3 high energy CO2 laser output to

the minimum pulse length tm requirement and to the upper limit on the

saturation thermal blooming pulse length ts, we find that tp is well above the

gas breakdown threshold for a variety of total extinction coefficients at-

Also for absorption coefficients less than 50 km-, tp is below the satti-ated

pul, e length ts. For example, at the center lobe (0) with high aabs anut

50 km" 1 , tp ~ 3.2Ps meets the requirements to maximize the single pulse

fluence delivery since 0.005ps ( tp ' 3.33ils. At relatively low total

extir'tion values at ~ L.0 km-, tp is again well within the pulse length

limitations imposed, that is, 0.58i's < t p < 13.6us in the center lobe (0).

Thus we see that thermal blooming and gas breakdown effects are not

significant factors in punch-through clearing as formulated in this article

for the S3 CO. HEL.
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